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We propose a numerical method for modeling two-phase flow consisting of sepa-
rate compressible and incompressible regions. This is of interest, for example, when
the combustion of fuel droplets or the shock-induced mixing of liquids is numerically
modeled. We use the level set method to track the interface between the compress-
ible and incompressible regions, as well as the Ghost Fluid Method (GFM) to create
accurate discretizations across the interface. The GFM is particularly effective here
since the equations differ in both number and type across the interface. The numeri-
cal method is presented in two spatial dimensions with numerical examples in both
one and two spatial dimensions, while three-dimensional extensions are straight-
forward. (© 2001 Academic Press

1. INTRODUCTION

Problems with large density ratios, e.g., the combustion of fuel droplets or the sho
induced mixing of liquids, are still rather diffcult for modern computational fluid dynam
ics. These problems all concern the interaction of liquid droplets with a compressible
medium. In general, there are three classical approaches to such problems: one can
both phases as compressible, the gas as compressible and the liquid as incompressil
both phases as incompressible.

When gas and liquid phases are treated as compressible, itis customary to model both
the fully compressible Navier—Stokes equations and a different equation of state for €
phase. The change in equation of state is known to cause oscillations in numerical solut
near phase interfaces. These oscillations can be suppressed; e.g., see [18, 19], whe
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oscillations caused by the numerical method in [22] are removed. However, the suppres
schemes have a side effect that fluid properties can be smeared near interfaces. More d
on the successful application of these types of numerical methods can be found in [1,
31, 32]. Numerical smearing across interfaces can be avoided using the Ghost Fluid Mef
(GFM) first proposed in [11] for two-phase compressible flow and later extended to shoc
deflagrations, and detonations in [12]. While the GFM can yield solutions with sharp
interfaces, a completely compressible treatment can be limiting because of the differenc
sound speed between the liquid and gas phases. The more restrictive CFL condition ir
liquid phase dictates a small time step for both phases, and this leads to inefficient nume
methods. In addition, a completely compressible approach is limited to liquids (or ott
materials) for which there are acceptable models for their compressible evolution.

To address such diffculties, we propose using the approach where the gas is modele
a compressible fluid and the liquid is modeled as an incompressible fluid. The method
be viewed as a phase decomposition approach in which a high-resolution shock-captu
scheme for the compressible flow is coupled with a standard incompressible flow sol
for the liquid. The sharp liquid—gas interface is captured with the level set method [2
Near the interface the GFM is used to treat the boundary conditions in a manner that ad
sharp discontinuities while still allowing for smooth discretizations across the interfac
One important feature of our method is that we do not evolve the solution using opere
splitting; in each time step both phases are updated simultaneously. Thus, the method a
the time discretization errors that are associated with time-split schemes. The equation:
solved with third-order TVD Runge—Kutta schemes in time and third-order ENO schen
in space [11, 13, 17, 30]. A method where the compressible and incompressible phase
also treated separately is presented in [14]. However, the method in [14] is restrictec
one spatial dimension and it was not clear how to extend that technique to multiple spe
dimensions without ill-advised dimensional splitting.

In our procedure we are treating the liquid phase as incompressible. An alternate poss
ity that retains the compressible nature of the liquid phase and avoids the time-step restric
of the difference in sound speeds would be to employ numerical methods designed spe
cally for low Mach number flow; e.g., [20] proposed a one-dimensional numerical meth
based on asymptotics which more recently was extended to apply to a large class of stan
compressible flow solvers in multiple dimensions [26]. In [5], this problem was treated wi
a semi-implicit method, implicit only in those terms related to the speed of sound. See &
[23] which generalized the work in [5]. A related method which splits the equations into
explicit advection phase and an implicit nonadvection phase appears in [36]. This partict
method has been used to produce phenomenal images of fluid motion; see, e.g., [35]. T
are many other notable methods and the reader is referred in particular to [10], which t
a Hodge decomposition, and [27], which addresses cancelation diffculties with low Ma
number flows. The general technique that we outline for evolving the gas and liquid pha
using separate models would apply to a method where the incompressible algorithm
replaced with one of the low-Mach-number solvers mentioned above; we leave this to fut
work.

Last, there are several methods that model both phases as incompressible [4, 6, 17
34]; however, this approach is ruled out because our interest is in flows where compress
effects in the gas phase are important.

In Section 2 we describe the equations that are used to evolve the compressible f
the incompressible fluid, and the level set function. In addition, this section addresses
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boundary conditions and coupling at the compressible/incompressible interface. Secti
discusses the general time stepping strategy including the details required to advance
phase for one Euler time step. Section 4 addresses higher order TVD Runge—Kutta met
and adaptive time stepping. Section 5 presents computational results that demonstrat
efficacy of our procedure. The numerical method is presented in two spatial dimensi
with computational results in both one and two spatial dimensions. Three-dimensic
extensions are straightforward.

2. EQUATIONS AND THEIR DISCRETIZATION

2.1. Compressible Flow

The basic equations for two-dimensional compressible ow are the Euler equations, w|
can be written as

0 pou PV
pu pU?+p puv
+ + ) =0, @)
pv puUv pve+ P
EJ¢ \(E+pu (E+ p)v

X

wheret is the time,x andy are the spatial dimensiong,is the densityy andv are the
velocities,E is the total energy per unit volume, apds the pressure. The total energy is
the sum of the internal energy and the kinetic energy,
2 2
E:pe+p(u —l—v)’ @
2

wheree is the internal energy per unit mass. The pressure can be written as a funci
of density and internal energp, = p(p, €). For the sake of simplicity only a gamma law
gas,p = (y — 1)pe, is considered in this paper. Note that the effects of viscosity, therm
conductivity, and mass diffusion are ignored in the compressible gas. The compress
flow equations are discretized using third-order accurate ENO methods. See [13, 30]
more detalils.

2.2. Incompressible Flow

The equations for incompressible flow can be deduced from the compressible flow ec
tions by setting the divergence of the velocity field= (u, v), to zero, obtaining
Vi+V.VV+

= 3)
0

V.V =0, (4)

Vp AV
P

where bothp andu are assumed to be constant in the incompressible region. The equati
are discretized on a MAC grid using the projection method [9], which allows Eq. (3) to |
rewritten as

— — 4V.VW="r (5)
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and

VAL SRV N vp

X P 0, (6)

where the convection terms are discretized with standard third-order Hamilton—Jacobi E
methods [11, 16], and the viscous terms are discretized with standard second-order ce
differencing. Oncé/* has been computed, the Poisson equation

Ap* =V - V* @)

is discretized with Dirichlet boundary conditions on the pressure. This equation is deri\
by taking the divergence of Eq. (6), noting that the divergencé"dtf is identically zero.
Also note that the pressure has been rescaled using

pr = (%) p 8

to define a scaled pressu, After Eq. (7) is solved for the scaled pressure, the approprial
form of Eq. (6) given by

VML _V* 4 Vpr =0 (9)
is used to obtaiiv"1,
2.3. The Level Set Method
The level set equation
¢ +V-Vp=0 (10)

is used to track the interface between the compressible and the incompressible reg
¢ < 0 designates the incompressible fluid afid- 0 designates the compressible fluid.
Hamilton—Jacobi WENO methods[11, 16] are used to advectthe level set function accorc
to Eqg. (10) and to reinitialize the level set function according to

¢t + S(¢o) (V| — 1) =0, (11)

which was first proposed in [33]. The level set function is used to define the unit norma
every grid point as

Vo

N‘:_,i:
Vol

(ng, Nz) (12)

using central differencing wherd points move from the incompressible fluid into the
compressible fluid. In the rare case where the denominator is identically zero, one-si
differencing is used to calculatg ande¢y in order to allow at least one nonzero value to
be calculated. The curvature at each grid point is defined as

(P2¢xx — 20xPydxy + D2dyy)
((,15)% + ¢$’> 15




NUMERICAL METHOD FOR TWO-PHASE FLOW 5

and discretized using standard central differencing. In order to ensure that underresc
regions do not erroneously contribute large surface tension forces, thresholding is apy
to the curvature so that it satisfies

lic| (14)

< —\
~ min(AX, Ay)

2.4. Interface Boundary Conditions

In order to obtain a numerical method that can treat the interface between compr
ible and incompressible flow one must first address the boundary conditions and coup
mechanisms at the interface. Since the interface is a contact discontinuity moving v
the local fluid velocity,\7, the Rankine—Hugoniot jump conditions imply thaf [= 0 and
[Vn] = O;i.e. both the pressure and the normal velo&lty,= V - N, are continuous across
the interface; see, e.g., [11].

In the presence of thermal conduction, the temperature is continuous across the inter
In this paper, thermal conductivity effects are ignored, introducing an uncoupled varia
across the interface. When compressible flow is considered, this can be thought of a
equation of state variable, e.g.,0or e. We choose the entrop$, as the equation of state
variable since the entropy obeys a simple advection equation of the form

S+V -VS=0 (15)

away from shocks, implying that the entropy is not convected across the interface (wt
moves at speelly in the normal direction) [11]. In the incompressible flow, both density
and internal energy obey Eq. (15), as well, wireplaced by eithes or erespectively [24].
Thus, similarly to the entropy, information in these variables does not cross the interface
the presence of viscosity, the tangential velocities are continuous, angl tae( boundary
condition needs to be modified to account for the viscous stress; see, e.g., [17]. In this ps
the compressible fluid is inviscid, implying that there is no viscous coupling across t
interface so thatfj] = 0 remains valid while the tangential velocities are uncoupled acro:
the interface. The nonzero incompressible viscosity only acts internal to the incompress
fluid. In addition, note that the tangential velocities obey Eq. (15) as well, implying th
information in these variables does not cross the interface.

In order to design a numerical method, the interface needs well defined values of all
independentvariables. This can be achieved by specib/,ihb andeon the incompressible
side of the interface ang, V, and p on the compressible side. All the uncoupled variable:
can be determined using one-sided extrapolation to the interface. These variables ar
tangential velocities on both sides of the interface, the incompressible density and inte
energy, and the compressible entropy. In the GFM, these interface values are not dire
used, but instead are captured using one-sided extrapolation of these quantities into ¢
cells on the opposite side of the interface. Note that both incompressible density and inte
energy are treated as spatially constant so that no numerical treatment of these vari
is needed. In fact, the incompressible internal energy can be completely omitted fr
the problem. TheV{y] = 0 jump condition implies that the normal velocity is continuous
across the interface and that both the compressible and incompressible normal velocity |
be considered in determining the unique value of the interface normal velocity, whichis u.
onboth sides ofthe interface. Once the interface normal velocity has been determined, al
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remains is the compressible pressure, and since all other interface values are determine
variable is actually uncoupled! Therefore the interface value of the compressible pres:s
is determined with one-sided extrapolation and can be captured with ghost cells simil:
to the variables that obey Eq. (15). This is quite surprising since the interface separa
two-phase compressible flow requires the same coupling for the pressure that is reqt
for the normal velocity [11].

The interface normal velocity can be determined using any number of interpolation te
nigues, but should be defined in a way that is consistent with incompressible flow. That
since the incompressible region and its boundary should behave in a way that conse
area (or volume in three dimensions), the interface normal velocity needs to be consis
with the interior incompressible flow, providing an extra global constraint on the interfa
normal velocity which is related to the compatibility condition; see [24]. For this reaso
the interface normal velocity is determined solely from the incompressible fluid value
This gives the interface velocity an incompressible character that helps to alleviate &
(or volume) loss. Once again, the exact interface velocity is not actually computed,
captured using one-sided extrapolation from the incompressible region. At this point, ¢
might have legitimate concerns over the coupling mechanisms; that is, while the compr
ible fluid sees an incompressible interface velocity, the incompressible fluid is oblivio
to the compressible velocity field. However, the incompressible fluid is coupled to t
compressible fluid in the projection step. The compressible interface pressure is use
a Dirichlet boundary condition in solving a Poisson equation in the incompressible |
gion, and the results are used to update the incompressible velocity field providing
proper coupling. Note that using the compressible pressure in this way also enforces
[p] = 0 boundary condition. In the presence of surface tension, the compressible pl
sure is not used directly, but is first modified according to the appropnite: [o«x jump
condition.

3. SOLUTION ADVANCEMENT

In this section we describe how our procedure advances the solution one Euler time ¢
Higher order TVD Runge—Kutta methods can be obtained as a combination of Euler ti
steps and simple averaging, as explained in the next section.

At the beginning of a time step the level set functign,is defined at all grid nodes.
The zero contour of the level sdtx, y) | (X, y) = 0}, delineates the interface between
compressible and incompressible fluids. The values of the compressible fluid are indic:
by ¢ > 0 and those of the incompressible fluid are indicate@ly 0. The compressible
fluid values of mass, momentum, and energy, designat@]i laye known at the nodes of a
non-staggered grid while the incompressible fluid velocities are known at staggered M
grid locations. The MAC grid values @f are defined using averaging of the nodal values
e.9.¢i+12) = (B +di+1j)/2.

To advance the solution consists of carrying out three calculations:

1. Extending the incompressible and compressible fluids across the interface using
ghost fluid technique.

2. Computingj n+l g+l andv*;i.e., advancing the compressible fluid and the level se
functpn one time step and computing the intermediate value of the incompressible velo
field V*.
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3. Projecting\7* onto its divergence-free component in the region defineddy < 0
to obtainV"** for the incompressible fluid. Note that this step also accounts for the interfa
forces imposed by the compressible pressure.

The extension of the flow variables across the interface allows the calculations in ste
to be implemented using standard difference formulas without regard to the position of
interface. The success of the procedure depends critically upon the manner in which
fluids are extended across the interface; the procedure used here is an extension of the
[11]. Since our spatial discretization uses a combination of staggered and non-stagg
grids, some additional complexity is introduced into the technique. However, this comple»
is tolerated because the use of a staggered MAC grid for the incompressible fluid gre
simplifies the implementation of the projection calculation in step 3.

We begin more detailed descriptions of steps 1-3 with a discussion of the methods
extending the incompressible and compressible fluids.

3.1. Incompressible Fluid Extension

Incompressible velocities need to be defined at ghost nodes in the compressible re
in order to advance the incompressible velocity field. In Section 2.4 it is concluded tl
these values should be obtained by extrapolation from their values in the incompress
region. Constant extrapolation in the normal direction to the interface can be implemer
by solving

L+ N-VI =0 (16)

in fictitious timet for | = u on the subset of the MAC grid where tlecomponent of
the incompressible velocity field is defined, and separately ferv on the subset of the
MAC grid where thew component of the incompressible velocity field is defined. Instead «
time marching, a first-order accurate solution to the steady state of Eq. (16) can be obta
by using the fast (velocity) extension method in [2] (which is based on the Fast Marchi
Method; see, e.g., [28]). We prefer this method as it substantially reduces the computati
execution time.

3.2. Compressible Fluid Extension

The compressible fluid extension at nodes within the incompressible region (i.e., cc
pressible ghost fluid nodes) is defined by the values of its velocity, its entropy, and
pressure. As discussed in Section 2.4, the interface boundary conditions dictate tha
entropy, the pressure, and the tangential velocity at the ghost fluid points be extrapol
from their values in the compressible region. The values of the entropy and pressure are
trapolated using the fast extension method in [2]. In order to construct a ghost cell veloc
we follow the procedure in [11]. The idea is to extrapolate the entire compressible veloc
field to the ghost points using [2] and then obtain the tangential velocity at the ghost poi
by computing the difference between the extrapolated velocity and its normal compon
The total velocity is then computed as

-

V= (\7I ' N)N + (Vext_ (\7ext‘ N)N) (17)
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where the first term is the normal component of the incompressible velocity and the sec
term is the tangential component of the extrapolated compressible velocity. The incc
pressible velocity\7. , heeds to be defined at the ghost nodes. If the extrapolated values
the incompressible velocity are defined first (as outlined above), then simple averaging
be used to obtain the incompressible velocity at each ghost node. Note that equation
does not require explicit knowledge of the tangent plane, making it easy to implement
three dimensions. Once the ghost node values for the velocity, pressure, and entropy
been defined, the conserved variables at the ghost nodes can be reassembled.

3.3. Computing U*L, ¢"+1, andV*

With the compressible ghost fluid values defined, compressible fluid values are advar
one time step by applying the ENO discretization procedure at points in the compress
region. Note that a band of ghost nodes are updated in time as well, so that they
appropriately defined in case the level set changes sign, making them real fluid grid no
Since the normal velocity of the interface is defined by the incompressible velocity field, tl
velocity field is used in Eq. (10) for the evolution of the level set function. Thus, to advan
¢ in time, the velocity in Eq. (10) is computed at the grid nodes using simple averaging
the extended incompressible velocity field. Finaﬁy, is computed by applying the ENO
discretization procedure to all points within the incompressible region including a ba
about the interface.

3.4. Projecting the Incompressible Fluid Increment

OnceV* and¢"*! have been computed the discrete Poisson equation with Dirichl
boundary conditions,

Ap* =V V*’ (18)

is used to obtain the scaled pressure in the region wiiere< 0. The boundary conditions
for p* are obtained fronp"** at all compressible points adjacent to the incompressibl
region using the formula

At
p* — <p|)(pn+l+o_K)

where theAt/p' multiplier accounts for the scaling, is the incompressible density, and
theo k term accounts for the jump in pressure due to surface tension forcegji.e- d«.
Note that the curvature is computed at each grid point using the level set furetion, To
solve (18) we use a preconditioned conjugate gradient (PCG) method with an Incomp
Choleski preconditioner [15]. Onq# has been compute\ﬁ()n+l is obtained with the relation
VML = V* — Vpr.

4. RUNGE-KUTTA AND ADAPTIVE TIME STEPPING

Since both second- and third-order TVD Runge—Kutta schemes [29] can be written ¢
convex combination of simple Euler steps [29, 17], it is straightforward to generalize t
first-order time discretization discussed in Section 3 to third-order TVD Runge—Kutta. O
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diffculty in implementing Runge—Kutta methods in problems with interfaces arises wh
nodal values change character as the interface moves (e.g., one may inadvertently av
incompressible and compressible flow values). However, the use of the GFT circumve
this diffculty. First, the values of the level set can be averaged directly. Second, the val
of the compressible fluid can be averaged using the appropriate ghost cell values w
necessary. Third, the incompressible velocity can be averaged using the extended valu
the\7MAc velocity field where needed. Note that the valueS?ngC in the ghost cells are
determined by one-sided extrapolation of the incompressible velocity and thus do not exe
satisfy the divergence-free condition, although they do have incompressible character.
can cause slight jumps in the pressure at the interface as a larger than normal pre:
gradient is needed to enforce exact incompressibility. Also, when using these exter
velocities in a Runge—Kutta averaging procedure, the resulting velocity field is not exac
divergence—free. However, the numerical results show that the area loss is small, espe
when compared to any standard level set calculation. Thus, these slightly compressible
velocities do not seem to be a significant source of error. Note that one could remove tt
errors entirely by defining the extended velocity field using a divergence-free constre
similar to the process outlined for free surface flows [7, 8].

Adaptive time stepping is used where the overall time step is the minimum of the co
pressible and incompressible time steps, i.e.,

At = 0.5min(AtC, Ath) (19)

where we have chosen a CFL restriction of 0.5. For compressible flow, the convective t
step restriction

At <|U|+C + |U|+C> <1 (20)
AX Ay

needs to be satisfied at every grid point, whete VTP is the speed of sound. For incom-
pressible flow, every grid point needs to satisfy

C V, C V)2 + 4 2
At'(( ot + Ver) + 1/( ;ﬂ+ )2 + 4(Sq) ) <1 21)
where
u v
Cen = % + % (22)
is for the convection terms,
" 2 2
Ve =~ ——= + —— 23
o p((Ax)2+ (Ay)2> (23)
is for the viscous terms, and
OK
= 24
S \/p(min{Ax, Ay))? )

is for the surface tension forces [17].
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5. NUMERICAL EXAMPLES

In this section, we report on numerical examples which demonstrate the accuracy
convergence behavior of the method. In particular, these examples show that the f
guantities are not smeared out near the interface nor do the numerical solutions exi
nonphysical oscillations. Also, all the two-dimensional numerical examples had less tt
%% area loss on the finest grids. The calculations performed here used third-order acct
TVD Runge—Kutta methods and adaptive time stepping as discussed in section 4. Ur
otherwise specified, the two-dimensional examples include the effects of viscosity ¢
surface tension with = .001137 kg/m s and = .0728 kg/$. These effects are not present
in one spatial dimension.

5.1. One-Dimensional Case

In one spatial dimension, the incompressible flow equations are greatly simplifie
Equation (4) becomes, = 0 implying that the incompressible velocity is constant.
Equation (3) then becomes

u+ > =o (25)
0

implying that Eq. (5) is jusu* = u". Equation (7) becomep, = 0 implying that the
incompressible pressure is merely a straight line connecting the valpe®ofthe left and
right boundaries. In fact, Eq. (9) becomes
Plight — Plert
— ] =
whereL is the length of the incompressible region.

u™t —u" + 0, (26)

5.1.1. ExampLE 1. Consider a 1-m domain with 200 grid cells. The domain is fillec
with a compressible gas with = 1.4, p = 1.226 kg/n¥, u = 0 m/s, andp = 1 x 10° Pa,
except for a 0.2-m incompressible droplet in the center of the domainowit 000 kg/n?,

u = 100 m/s, angp = 1 x 10° Pa. Since the incompressible droplet is moving to the righ
in a gas which is originally at rest, a compression wave will form in the gas ahead of it a
an expansion wave will form in the gas behind it as shown in Fig.t1=a.5 x 107* s.
The density, velocity, and pressure all drop across the few-grid-cell-thick compress
wave, although the density jump is too small to be seen in the figure. The density ¢
pressure drop while the velocity rises across the smooth expansion wave which is reso
by the grid, although once again, the density change is too small to be seen in the fig
Figure 2 shows similar behavior with an incompressible density ef 10 kg/n?. Note
that the lighter droplet is slowed down faster by the compressible gas, and as a re
secondary expansion waves with significant amplitude stretch between the droplet anc
lead compression and expansion waves. A grid refinement study was performed on |
calculations using grids of 200, 400, and 800 cells. The incompressible velocity was u
for the comparison with Aitken extrapolation [3]. The computed velocities of 99.721
99.7189, and 99.7175 m/s from the coarsest to the finest mesh yield a convergence ra
0.9475 for thep = 1000 kg/n? case, and the computed velocities of 75.6466, 75.4843, ar
75.4043 m/s yield a convergence rate of 1.0206 fopthe 10 kg/n? case. Figure 3 shows
the results obtained with 800 grid cells for the= 10 kg/n? case to illustrate the behavior
of the variables under mesh refinement.
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5.1.2. &XamPLE 2. In this example, the ambient compressible medium has
1.58317 kg/ni, u=0 m/s, andp = 98,0665 Pa. A shock wave is initially located at=
0.1 m with a post-shock state pf= 2.124 kg/n¥, u = 89.981 m/s, andg = 148 407.3 Pa
to the left ofx = 0.1 m. The shock wave travels to the right, impinging on the incompres:
ible droplet with initial state of = 1000 kg/n¥, u = 0 m/s, andp = 98,0665 Pa, causing
both reflected and transmitted waves as shown in Figt4=a1.75 x 10° s. Note that the
transmitted wave is too weak to be seen in this figure, although it can clearly be seel
Fig. 5, which shows the same calculation with an incompressible density-0f0 kg/n.
Figure 6 shows the calculation at an earlier timeef9 x 10~4s with adensity of 10 kg/f
shortly after the shock has initially impinged on the droplet. Note that the transmitted we
has traversed the droplet at infinite speed and is now entering the gas on the far side. A
refinement study was performed on both calculations using grids of 200, 400, and 800 ¢
and the incompressible velocity for the comparison. The computed velocities of 0.5444
0.5444639, and 0.5444742 m/s from the coarsest to the finest mesh yield a convergenc
of 1.0617 for thep = 1000 kg/nf case, and the computed velocities of 40.9873, 40.868"
and 40.8074 m/s yield a convergence rate of 0.9593 fopteel0 kg/n? case. Figure 7
shows the results obtained with 800 grid cells for the: 10 kg/n? case to illustrate the
behavior of the variables under mesh refinement.

5.2. Two-Dimensional Case

5.2.1. XxampLE 3. Consider a [0 m, 1 mk [0 m, 1 m] domain with 100 grid cells
in each direction. Similarly to Example 1, the domain is filled with a compressible g
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FIG.8. Incompressiblep = 1000 kg/ni droplet traveling to the right at=5 x 10-* s (one-dimensional cross
section).

with p = 1.226 kg/n¥, u=v = 0 m/s, andp = 1 x 10° Pa, except for a 0.2-m radius
incompressible droplet in the center of the domain itk 1000 kg/n?, u = 100 m/s,
v =0 m/s, andp = 1 x 10° Pa. This incompressible droplet moves to the right, causing
compression wave in the gas ahead of it and an expansion wave in the gas behind it. Fig
shows a one-dimensional cross-section of these waves & x 10~* s. Figures 9 and 10
show the pressure contours and the velocity field at the same time. Figure 11 shows
initial level set location as compared to the locatioh &t 2.5 x 102 s using 50, 100, and
200 grid cells in each direction. Careful examination of the right-hand side of the level
location shows first order accurate convergence in the location of the interface. An ¢
loss study was undertaken using the method outlined in the Appendix. Initially, the a
of the droplet is 0.04. The area loss was 0.23, 0.16, and 0.0125% on grids with 50, 1C
and 200 cells in each direction respectively. Similar resultgpfer 10 kg/n? are shown in
Figs. 12 and 13 where the arealoss was 0.49, 0.31, and 0.13%. Notice that the lighter dr
has been deformed and slowed at a higher rate than the heavier droplet. Also note the
calculation on the finest mesh is starting to show signs of Kelvin—Helmholtz instability
demonstrated by the small wiggles in the interface location. This instability occurs when
tangential velocity is discontinuous across an interface as is required by the imposed no
interface boundary condition. On coarser grids, the numerical viscosity can nonphysic
damp out this effect.

In order to illustrate the effects of viscosity and surface tension, we shrink the dom
to [0 m, 1x 1075 m] x [0 m, 1 x 10~°> m] for the p = 10 kg/n¥ case. Figure 14 shows a
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one-dimensional cross section of these waveés-a6 x 10~ s. Note the jump in pressure
due to surface tension effects. Figure 15 shows the initial level set location as compe
to the location at 2 x 10~8 using 50, 100, and 200 grid cells in each direction where th
area loss was 0.225, 0.107, and 0.006%, respectively. Note that the smaller droplet 1€
a rounder shape than the larger droplet in Fig. 13.

5.2.2. XAMPLE 4. Consider a [0 m, 1 mk [0 m, 1 m] domain with 100 grid cells
in each direction. Similarly to Example 2, the ambient compressible mediunp bas
1.58317 kg/m, u = v = 0 m/s, andp = 98,0665 Pa. A shock wave is initially located
at x = 0.1 m with a post-shock state @f = 2.124 kg/n¥, u = 89.981 m/s,v = 0 m/s,
and p = 148407.3 Pa to the left ok = 0.1 m. The shock wave travels to the right im-
pinging on the incompressible droplet with initial statepof= 10 kg/n¥, u = v = 0 m/s,
and p = 98,0665 Pa, with radius 0.2 m at the center of the domain, causing both r
flected and transmitted waves as shown in the one-dimensional cross sections in Fig. :
1.25x 1072 s. Figure 17 shows the velocity fields at the same time. Figure 18 shows 1
initial level set location as compared to the locatioh &t 2.5 x 10~2 s using 50, 100, and
200 grid cells in each direction where the area loss was 1.6, 0.52, and 0.43%, respecti
Note that the calculation on the finest mesh is starting to show signs of Kelvin—Helmhc
instability.
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FIG. 16. Shock wave impinging on an incompressikle= 10 kg/n? droplet att = 1.25x 10°% s (one-
dimensional cross section).
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FIG. 18. Shock wave impinging on an incompressiple= 10 kg/n? droplet at = 2.5 x 10-% s as compared
to the initial data.

6. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a numerical method for two-phase ow where one o
phases istreated as anincompressible flow and one is treated as a compressible flow. Tt
mary computational diffculty in creating numerical schemes that respect the fundament
different nature of the fluids in these phases is the creation and implementation of ap
priate boundary conditions. We derive boundary conditions using “ghost fluid” ideas; t
computational results indicate that high-quality solutions can be obtained with their use.
test problem we considered was the behavior of an incompressible liquid when subje
to shock waves formed in a high-speed gas flow. This test problem was primarily selec
to investigate the ability of our proposed method to compute compressible/incompress
flow interactions when the compressible flow contains shocks. It is a separate (and ir
esting) problem in fluid mechanics to consider the validity of modeling liquid/gas pha
interactions as an incompressible/compressible interaction. In future work, the validity
the incompressible assumption for the liquid will be tested by comparing the results
tained with the method presented here with the results obtained with a method where
liquid is modeled as a slightly compressible fluid.

APPENDIX: UNBIASED LEVEL SET CONTOURING

Consider a two-dimensional level set functign,defined on a Cartesian grid. This ap-
pendix addresses the construction of an unbiased linear approximation to the zero cor
(whereg = 0) of the level set function (commonly used contour routines introduce a dire
tional bias due to the choice of an underlying triangulation).
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(a) (b)

FIG. 19. (a) Diagonal, (b) off-diagonal.

The standard contour-plotting algorithms dictate triangulation of the domain, followe
by linear interpolation along each edge of each triangle, resulting in the determinatior
the location of the zero values of the level set function along each edge. These zero ve
occur on two of the edges when the sign of the level set function on one corner is differ
from the sign on the other two corners, or on none of the edges when the sign of the ¢
set function is the same on all three corners. In the case where the zero values occl
two of the edges, a line segment can be used to connect these two zero values, leadin
piecewise linear subcell representation of the zero contour of the level set function. Fr
this zero contour one can easily calculate quantities such as the area enclosed by ¢
length of the zero contour.

A straightforward way to choose a triangulation consists of constructing a diagonal
every Cartesian grid cell. L4 j, Xi+1j. Xi, j+1, andXj41 j4+1 represent a single grid cell
where the subscripts place the points in the obvious locations. Then one could const
thediagonalconnectingX; ; andX;_1 j;+1 or theoff-diagonalconnectingXi1 ; andXi j;1
as shown in Figs. 19a and 19b, respectively. For each Cartesian grid cell, there are
distinct cases to consider. Case 1: all four nodal values have the same signaté that
we classifyp = 0 as negative, since we partition the domain into two parts consisting
¢ < 0andg > 0). In Case 1, there is nothing to address since the cell does not contain :
part of the zero contour. Case 2: one of the nodal values has a different sign than the c
three. Case 3: there are two nodes of each sign and opposite corners are of the same
Case 4: there are two nodes of each sign and opposite corners are of opposite sign.
case is discussed in detail below.

Consider Case 2 withh ; <0, ¢i11j > 0, ¢i j+1 > 0 and¢i11 j+1 > 0. The diagonal
determines two triangles which each contain part of the interface, while only one of the t
triangles produced by the off-diagonal contains part of the interface; i.e., different answ
are obtained depending on whether the diagonal or the off-diagonal is used. See Fig. 2
an illustration of the diagonal case (Fig. 20a) and the off-diagonal case (Fig. 20b). In-
figure, the shaded regions dengtec 0. Presumably, using the extra zero value that lies o
the diagonal itself results in a more accurate construction as shown in Fig. 20a. Otherw
there is no need for triangles in this case at all, as one can construct the representation
by the off-diagonal construction in Fig. 20b by simply connecting the linearly interpolate
zeroes on each side of the grid cell. Note that the diagonal gives extra information
extra point) when eithep; j or ¢i11 j+1 is the point of differing sign, but gives no extra
information (no extra point) when either, 1 ; or ¢; j11 is the point of differing sign. For
the case where eithe, 1 ; or ¢; j11 is the point of differing sign, the off-diagonal must be
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(a) (b)

FIG. 20. (a) Diagonal, (b) off-diagonal.

used to pick up extra information (an extra point). This case points out that it is unwise
use diagonals (or off-diagonals) everywhere since the reconstruction is biased. It is b
to use an “adaptive” triangulation which always gives extra information; i.e., one shot
choose the diagonal or off-diagonal in order to obtain a construction similar to Fig. 20a ¢
not Fig. 20b.

Consider Case 3 with ; <0, ¢i11j > 0, ¢ j+1 > 0, andei 41, j+1 < 0. The diagonal
construction implies that the line of sight (the line segment connecting two points in spa
betweeng; ; and¢; 1 j+1 is contained inp < 0, while the line of sight betweeg; 1 |
and ¢; j+1 is not contained inp > 0, as shown in Fig. 21a. Similarly, the off-diagonal
construction implies that the line of sight betwegn, j and¢; j11 is contained irp > 0,
while the line of sight betweeg; ; and¢;1 j+1 is not contained iy < 0, as shown in
Fig. 21b. In level set notation, the diagonal construction implies that the negative value:
the level set have (or are) “merged,” while the off-diagonal construction implies that t

(b)

(e) (d)

FIG. 21. (a) Diagonal, (b) off-diagonal, (c) connect opposite edges, (d) adaptive triangulation.
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positive values of the level set are merged. In fact, using a diagonal construction everywt
creates a grid dependence of increased merging in the diagonal direction, while using
off-diagonal construction everywhere creates a grid dependence of increased mergir
the off-diagonal direction. Obviously, this is not desirable and some average of these"
constructions is desired, especially since the information given (at the grid nodes) does
dictate whether merging has occurred. The choice of triangulation itself forces the mergi
Using the linearly interpolated zero values on each of the four sides of the cell, one can
that the diagonal construction implies that the point on the bottom of the cell befygen
andXi1 j is connected to the point on the right of the cell betw&en j and X1 j+1,
while the point on the left of the cell betwe&n; andX; j.1 is connected to the point on the
top of the cell betweeR; j;1 andXi1 j11, implying that the negative values are merged.
Similarly, the off-diagonal construction implies that the point on the bottom of the cell
connected to the point on the left, while the point on the right is connected to the point
top, implying that the positive values are merged. Since there are four points to be pa
off into two linear segments, three are three ways to make the connections. The diag
and off-diagonal constructions give only two ways, leaving one possibility inaccessible
these straightforward triangulations. The remaining way to connect the four points cons
of connecting the points on opposite sides of the cell giving a construction where neither
positive nor the negative values are merged as shown in Fig. 21c. In fact, both the posi
and the negative values are in contact at a single saddle point formed by the intersectic
the two line segments producing an “average” of the two triangulations. While achievi
the desired compromise between positive and negative merging, this method does no
triangulation to determine an extra point, as opposed to Fig. 20a. In addition, the positive
negative merging cases do not use an extra subcell point either, as they can be constr
by connecting the zero values of the Cartesian cell in the appropriate fashion. In fact,
positive and negative merging cases each contain two line segments similar to Case 2 wit
triangulation as was shown in Fig. 20b. Therefore, in order to introduce a new point wit
this cell to improve the accuracy, we choose the standard average of the four zero value
the Cartesian cell boundary. The zero contour is constructed by connecting this new poil
each of the four zero values from which it was formed. Note that this construction can
obtained with an adaptive triangulation where the cell is divided into four triangles defin
by the line segments connecting this new zero value inside the cell to each of the four cor
of the cell. This adaptive triangulation and the resulting segmentation are shown in Fig. 2
Consider Case 4 with ; < 0,¢i+1j <0, ¢ j+1 > 0andg; 11 j+1 > 0. One could sim-
ply connect the two zero values with a straight line ignoring triangulation as shown
Fig. 22a. Using triangulation gives a different subcell point depending on whether the
agonal (Fig. 22b) or the off-diagonal (Fig. 22c) is used (except for the case where
subcell point happens to be the intersection of the diagonal and the off-diagoihatior
constructions). To avoid ambiguities one needs to determine which of these two candid
for the intermediate point should be used. Designating the subcell candidakesabyg
X» and the zeroes on the Cartesian boundary bgndXg, both points can be used in the
construction by connecting to X; to X, to X (Fig. 22d) or by connecting, to X, to X; to
Xr (Fig. 22e). However, this gives a subcell contour with a possibly large variation. Inste
of choosing one or the other, we note that the line segment connégttock, lies on both
contours and choose the midpoint of this line segment (the standard averagenofx,)
as the subcell zero value and connect this midpoint to each of the zeroes on the Carte
boundary, resulting in a construction with less variation (a shorter length) than one us



NUMERICAL METHOD FOR TWO-PHASE FLOW 25

(a) (b)

(c) (d)

(e) (£)

FIG.22. (a)Connectopposite edges, (b) diagonal, (c) off-diagonal, (d) both, (e) both, (f) adaptive triangulati

bothX; andX,. Once again, this construction can be obtained with an adaptive triangulat
where the cell is divided into four triangles defined by the line segments connecting this r
zero value inside the cell to each of the four corners of the cell. This adaptive triangulat
and the resulting segmentation are shown in Fig. 22f. It is interesting to note that Case 3
Case 4 have two corner values of differing sign and require four triangles, while Case 2
one corner value of differing sign and requires two triangles, implying that two triangl
are needed for each corner that differs in sign.

Note that one could ignore triangulation altogether, simply connecting the two edge po
in Case 2 (Fig. 20b) and in Case 4 (Fig. 22a), while connecting the points on the oppo
sides of the cellin Case 3 (Fig. 21c). This gives similar answers in each case, although st
what less accurately since no extra grid point is determined within the cell.

A.1. Calculating Area

We use the cross product of two vectors to compute the area of triangles, as thi
rather robust. For example, consider a triangle with vertices defined ¥y, andX. in
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counterclockwise order; then defining = X, — Xa andv, = X — X5 allows us to define
the area a$y x v/2. Using this definition it is easy to avoid rounded errors due to thil
triangles, as they show up as a negative area that can be discarded.
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