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We propose a numerical method for modeling two-phase flow consisting of sepa-
rate compressible and incompressible regions. This is of interest, for example, when
the combustion of fuel droplets or the shock-induced mixing of liquids is numerically
modeled. We use the level set method to track the interface between the compress-
ible and incompressible regions, as well as the Ghost Fluid Method (GFM) to create
accurate discretizations across the interface. The GFM is particularly effective here
since the equations differ in both number and type across the interface. The numeri-
cal method is presented in two spatial dimensions with numerical examples in both
one and two spatial dimensions, while three-dimensional extensions are straight-
forward. c© 2001 Academic Press

1. INTRODUCTION

Problems with large density ratios, e.g., the combustion of fuel droplets or the shock-
induced mixing of liquids, are still rather diffcult for modern computational fluid dynam-
ics. These problems all concern the interaction of liquid droplets with a compressible gas
medium. In general, there are three classical approaches to such problems: one can treat
both phases as compressible, the gas as compressible and the liquid as incompressible, or
both phases as incompressible.

When gas and liquid phases are treated as compressible, it is customary to model both with
the fully compressible Navier–Stokes equations and a different equation of state for each
phase. The change in equation of state is known to cause oscillations in numerical solutions
near phase interfaces. These oscillations can be suppressed; e.g., see [18, 19], where the
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oscillations caused by the numerical method in [22] are removed. However, the suppression
schemes have a side effect that fluid properties can be smeared near interfaces. More details
on the successful application of these types of numerical methods can be found in [1, 25,
31, 32]. Numerical smearing across interfaces can be avoided using the Ghost Fluid Method
(GFM) first proposed in [11] for two-phase compressible flow and later extended to shocks,
deflagrations, and detonations in [12]. While the GFM can yield solutions with sharp uid
interfaces, a completely compressible treatment can be limiting because of the difference in
sound speed between the liquid and gas phases. The more restrictive CFL condition in the
liquid phase dictates a small time step for both phases, and this leads to inefficient numerical
methods. In addition, a completely compressible approach is limited to liquids (or other
materials) for which there are acceptable models for their compressible evolution.

To address such diffculties, we propose using the approach where the gas is modeled as
a compressible fluid and the liquid is modeled as an incompressible fluid. The method can
be viewed as a phase decomposition approach in which a high-resolution shock-capturing
scheme for the compressible flow is coupled with a standard incompressible flow solver
for the liquid. The sharp liquid–gas interface is captured with the level set method [21].
Near the interface the GFM is used to treat the boundary conditions in a manner that admits
sharp discontinuities while still allowing for smooth discretizations across the interface.
One important feature of our method is that we do not evolve the solution using operator
splitting; in each time step both phases are updated simultaneously. Thus, the method avoids
the time discretization errors that are associated with time-split schemes. The equations are
solved with third-order TVD Runge–Kutta schemes in time and third-order ENO schemes
in space [11, 13, 17, 30]. A method where the compressible and incompressible phases are
also treated separately is presented in [14]. However, the method in [14] is restricted to
one spatial dimension and it was not clear how to extend that technique to multiple spatial
dimensions without ill-advised dimensional splitting.

In our procedure we are treating the liquid phase as incompressible. An alternate possibil-
ity that retains the compressible nature of the liquid phase and avoids the time-step restriction
of the difference in sound speeds would be to employ numerical methods designed specifi-
cally for low Mach number flow; e.g., [20] proposed a one-dimensional numerical method
based on asymptotics which more recently was extended to apply to a large class of standard
compressible flow solvers in multiple dimensions [26]. In [5], this problem was treated with
a semi-implicit method, implicit only in those terms related to the speed of sound. See also
[23] which generalized the work in [5]. A related method which splits the equations into an
explicit advection phase and an implicit nonadvection phase appears in [36]. This particular
method has been used to produce phenomenal images of fluid motion; see, e.g., [35]. There
are many other notable methods and the reader is referred in particular to [10], which uses
a Hodge decomposition, and [27], which addresses cancelation diffculties with low Mach
number flows. The general technique that we outline for evolving the gas and liquid phases
using separate models would apply to a method where the incompressible algorithm was
replaced with one of the low-Mach-number solvers mentioned above; we leave this to future
work.

Last, there are several methods that model both phases as incompressible [4, 6, 17, 33,
34]; however, this approach is ruled out because our interest is in flows where compressible
effects in the gas phase are important.

In Section 2 we describe the equations that are used to evolve the compressible fluid,
the incompressible fluid, and the level set function. In addition, this section addresses the
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boundary conditions and coupling at the compressible/incompressible interface. Section 3
discusses the general time stepping strategy including the details required to advance each
phase for one Euler time step. Section 4 addresses higher order TVD Runge–Kutta methods
and adaptive time stepping. Section 5 presents computational results that demonstrate the
efficacy of our procedure. The numerical method is presented in two spatial dimensions
with computational results in both one and two spatial dimensions. Three-dimensional
extensions are straightforward.

2. EQUATIONS AND THEIR DISCRETIZATION

2.1. Compressible Flow

The basic equations for two-dimensional compressible ow are the Euler equations, which
can be written as 

ρ

ρu
ρv

E


t

+


ρu

ρu2+ p
ρuv

(E + p)u


x

+


ρv

ρuv

ρv2+ p

(E + p)v


y

= 0, (1)

wheret is the time,x and y are the spatial dimensions,ρ is the density,u andv are the
velocities,E is the total energy per unit volume, andp is the pressure. The total energy is
the sum of the internal energy and the kinetic energy,

E = ρe+ ρ(u
2+ v2)

2
, (2)

wheree is the internal energy per unit mass. The pressure can be written as a function
of density and internal energy,p = p(ρ, e). For the sake of simplicity only a gamma law
gas,p = (γ − 1)ρe, is considered in this paper. Note that the effects of viscosity, thermal
conductivity, and mass diffusion are ignored in the compressible gas. The compressible
flow equations are discretized using third-order accurate ENO methods. See [13, 30] for
more details.

2.2. Incompressible Flow

The equations for incompressible flow can be deduced from the compressible flow equa-
tions by setting the divergence of the velocity field,EV = 〈u, v〉, to zero, obtaining

EVt + EV · ∇ EV + ∇ p

ρ
= µ4 EV

ρ
(3)

∇ · EV = 0, (4)

where bothρ andµ are assumed to be constant in the incompressible region. The equations
are discretized on a MAC grid using the projection method [9], which allows Eq. (3) to be
rewritten as

EV? − EVn

4t
+ EV · ∇ EV = µ4 EV

ρ
(5)
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and

EVn+1− EV?

4t
+ ∇ p

ρ
= 0, (6)

where the convection terms are discretized with standard third-order Hamilton–Jacobi ENO
methods [11, 16], and the viscous terms are discretized with standard second-order central
differencing. OnceEV? has been computed, the Poisson equation

1p? = ∇ · EV? (7)

is discretized with Dirichlet boundary conditions on the pressure. This equation is derived
by taking the divergence of Eq. (6), noting that the divergence ofEVn+1 is identically zero.
Also note that the pressure has been rescaled using

p? =
(4t

ρ

)
p (8)

to define a scaled pressure,p?. After Eq. (7) is solved for the scaled pressure, the appropriate
form of Eq. (6) given by

EVn+1− EV? +∇ p? = 0 (9)

is used to obtainEVn+1.

2.3. The Level Set Method

The level set equation

φt + EV · ∇φ = 0 (10)

is used to track the interface between the compressible and the incompressible regions.
φ ≤ 0 designates the incompressible fluid andφ > 0 designates the compressible fluid.
Hamilton–Jacobi WENO methods [11, 16] are used to advect the level set function according
to Eq. (10) and to reinitialize the level set function according to

φt + S(φ0)(| E∇φ| − 1) = 0, (11)

which was first proposed in [33]. The level set function is used to define the unit normal at
every grid point as

EN =
E∇φ
| E∇φ| = 〈n1, n2〉 (12)

using central differencing whereEN points move from the incompressible fluid into the
compressible fluid. In the rare case where the denominator is identically zero, one-sided
differencing is used to calculateφx andφy in order to allow at least one nonzero value to
be calculated. The curvature at each grid point is defined as

κ = ∇ · EN =
(
φ2

yφxx − 2φxφyφxy+ φ2
xφyy

)(
φ2

x + φ2
y

)1.5 (13)
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and discretized using standard central differencing. In order to ensure that underresolved
regions do not erroneously contribute large surface tension forces, thresholding is applied
to the curvature so that it satisfies

|κ| ≤ 1

min(4x,4y)
. (14)

2.4. Interface Boundary Conditions

In order to obtain a numerical method that can treat the interface between compress-
ible and incompressible flow one must first address the boundary conditions and coupling
mechanisms at the interface. Since the interface is a contact discontinuity moving with
the local fluid velocity,EV , the Rankine–Hugoniot jump conditions imply that [p] = 0 and
[VN ] = 0; i.e. both the pressure and the normal velocity,VN = EV · EN, are continuous across
the interface; see, e.g., [11].

In the presence of thermal conduction, the temperature is continuous across the interface.
In this paper, thermal conductivity effects are ignored, introducing an uncoupled variable
across the interface. When compressible flow is considered, this can be thought of as an
equation of state variable, e.g.,ρ or e. We choose the entropy,S, as the equation of state
variable since the entropy obeys a simple advection equation of the form

St + EV · ∇S= 0 (15)

away from shocks, implying that the entropy is not convected across the interface (which
moves at speedVN in the normal direction) [11]. In the incompressible flow, both density
and internal energy obey Eq. (15), as well, withSreplaced by eitherρ orerespectively [24].
Thus, similarly to the entropy, information in these variables does not cross the interface. In
the presence of viscosity, the tangential velocities are continuous, and the [p] = 0 boundary
condition needs to be modified to account for the viscous stress; see, e.g., [17]. In this paper,
the compressible fluid is inviscid, implying that there is no viscous coupling across the
interface so that [p] = 0 remains valid while the tangential velocities are uncoupled across
the interface. The nonzero incompressible viscosity only acts internal to the incompressible
fluid. In addition, note that the tangential velocities obey Eq. (15) as well, implying that
information in these variables does not cross the interface.

In order to design a numerical method, the interface needs well defined values of all the
independent variables. This can be achieved by specifyingρ, EV , andeon the incompressible
side of the interface andS, EV , andp on the compressible side. All the uncoupled variables
can be determined using one-sided extrapolation to the interface. These variables are the
tangential velocities on both sides of the interface, the incompressible density and internal
energy, and the compressible entropy. In the GFM, these interface values are not directly
used, but instead are captured using one-sided extrapolation of these quantities into ghost
cells on the opposite side of the interface. Note that both incompressible density and internal
energy are treated as spatially constant so that no numerical treatment of these variables
is needed. In fact, the incompressible internal energy can be completely omitted from
the problem. The [VN ] = 0 jump condition implies that the normal velocity is continuous
across the interface and that both the compressible and incompressible normal velocity must
be considered in determining the unique value of the interface normal velocity, which is used
on both sides of the interface. Once the interface normal velocity has been determined, all that
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remains is the compressible pressure, and since all other interface values are determined, this
variable is actually uncoupled! Therefore the interface value of the compressible pressure
is determined with one-sided extrapolation and can be captured with ghost cells similarly
to the variables that obey Eq. (15). This is quite surprising since the interface separating
two-phase compressible flow requires the same coupling for the pressure that is required
for the normal velocity [11].

The interface normal velocity can be determined using any number of interpolation tech-
niques, but should be defined in a way that is consistent with incompressible flow. That is,
since the incompressible region and its boundary should behave in a way that conserves
area (or volume in three dimensions), the interface normal velocity needs to be consistent
with the interior incompressible flow, providing an extra global constraint on the interface
normal velocity which is related to the compatibility condition; see [24]. For this reason,
the interface normal velocity is determined solely from the incompressible fluid values.
This gives the interface velocity an incompressible character that helps to alleviate area
(or volume) loss. Once again, the exact interface velocity is not actually computed, but
captured using one-sided extrapolation from the incompressible region. At this point, one
might have legitimate concerns over the coupling mechanisms; that is, while the compress-
ible fluid sees an incompressible interface velocity, the incompressible fluid is oblivious
to the compressible velocity field. However, the incompressible fluid is coupled to the
compressible fluid in the projection step. The compressible interface pressure is used as
a Dirichlet boundary condition in solving a Poisson equation in the incompressible re-
gion, and the results are used to update the incompressible velocity field providing the
proper coupling. Note that using the compressible pressure in this way also enforces the
[ p] = 0 boundary condition. In the presence of surface tension, the compressible pres-
sure is not used directly, but is first modified according to the appropriate [p] = σκ jump
condition.

3. SOLUTION ADVANCEMENT

In this section we describe how our procedure advances the solution one Euler time step.
Higher order TVD Runge–Kutta methods can be obtained as a combination of Euler time
steps and simple averaging, as explained in the next section.

At the beginning of a time step the level set function,φ, is defined at all grid nodes.
The zero contour of the level set,{(x, y) | φ(x, y) = 0}, delineates the interface between
compressible and incompressible fluids. The values of the compressible fluid are indicated
by φ > 0 and those of the incompressible fluid are indicated byφ ≤ 0. The compressible
fluid values of mass, momentum, and energy, designated byEU , are known at the nodes of a
non-staggered grid while the incompressible fluid velocities are known at staggered MAC
grid locations. The MAC grid values ofφ are defined using averaging of the nodal values,
e.g.,φi+1/2, j = (φi, j + φi+1, j )/2.

To advance the solution consists of carrying out three calculations:

1. Extending the incompressible and compressible fluids across the interface using the
ghost fluid technique.

2. ComputingEUn+1,φn+1, and EV?; i.e., advancing the compressible fluid and the level set
function one time step and computing the intermediate value of the incompressible velocity
field EV?.
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3. ProjectingEV? onto its divergence-free component in the region defined byφn+1 ≤ 0
to obtainEVn+1 for the incompressible fluid. Note that this step also accounts for the interface
forces imposed by the compressible pressure.

The extension of the flow variables across the interface allows the calculations in step 2
to be implemented using standard difference formulas without regard to the position of the
interface. The success of the procedure depends critically upon the manner in which the
fluids are extended across the interface; the procedure used here is an extension of the GFM
[11]. Since our spatial discretization uses a combination of staggered and non-staggered
grids, some additional complexity is introduced into the technique. However, this complexity
is tolerated because the use of a staggered MAC grid for the incompressible fluid greatly
simplifies the implementation of the projection calculation in step 3.

We begin more detailed descriptions of steps 1–3 with a discussion of the methods for
extending the incompressible and compressible fluids.

3.1. Incompressible Fluid Extension

Incompressible velocities need to be defined at ghost nodes in the compressible region
in order to advance the incompressible velocity field. In Section 2.4 it is concluded that
these values should be obtained by extrapolation from their values in the incompressible
region. Constant extrapolation in the normal direction to the interface can be implemented
by solving

Iτ + EN · E∇ I = 0 (16)

in fictitious timeτ for I = u on the subset of the MAC grid where theu component of
the incompressible velocity field is defined, and separately forI = v on the subset of the
MAC grid where thev component of the incompressible velocity field is defined. Instead of
time marching, a first-order accurate solution to the steady state of Eq. (16) can be obtained
by using the fast (velocity) extension method in [2] (which is based on the Fast Marching
Method; see, e.g., [28]). We prefer this method as it substantially reduces the computational
execution time.

3.2. Compressible Fluid Extension

The compressible fluid extension at nodes within the incompressible region (i.e., com-
pressible ghost fluid nodes) is defined by the values of its velocity, its entropy, and its
pressure. As discussed in Section 2.4, the interface boundary conditions dictate that the
entropy, the pressure, and the tangential velocity at the ghost fluid points be extrapolated
from their values in the compressible region. The values of the entropy and pressure are ex-
trapolated using the fast extension method in [2]. In order to construct a ghost cell velocity,
we follow the procedure in [11]. The idea is to extrapolate the entire compressible velocity
field to the ghost points using [2] and then obtain the tangential velocity at the ghost points
by computing the difference between the extrapolated velocity and its normal component.
The total velocity is then computed as

EV = ( EV I · EN) EN + ( EVext− ( EVext · EN) EN) (17)
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where the first term is the normal component of the incompressible velocity and the second
term is the tangential component of the extrapolated compressible velocity. The incom-
pressible velocity,EV I , needs to be defined at the ghost nodes. If the extrapolated values of
the incompressible velocity are defined first (as outlined above), then simple averaging can
be used to obtain the incompressible velocity at each ghost node. Note that equation (17)
does not require explicit knowledge of the tangent plane, making it easy to implement in
three dimensions. Once the ghost node values for the velocity, pressure, and entropy have
been defined, the conserved variables at the ghost nodes can be reassembled.

3.3. Computing Un+1, φn+1, and EV?

With the compressible ghost fluid values defined, compressible fluid values are advanced
one time step by applying the ENO discretization procedure at points in the compressible
region. Note that a band of ghost nodes are updated in time as well, so that they are
appropriately defined in case the level set changes sign, making them real fluid grid nodes.
Since the normal velocity of the interface is defined by the incompressible velocity field, this
velocity field is used in Eq. (10) for the evolution of the level set function. Thus, to advance
φ in time, the velocity in Eq. (10) is computed at the grid nodes using simple averaging of
the extended incompressible velocity field. Finally,EV? is computed by applying the ENO
discretization procedure to all points within the incompressible region including a band
about the interface.

3.4. Projecting the Incompressible Fluid IncrementEV?

Once EV? andφn+1 have been computed the discrete Poisson equation with Dirichlet
boundary conditions,

1p? = ∇ · EV?, (18)

is used to obtain the scaled pressure in the region whereφn+1 ≤ 0. The boundary conditions
for p? are obtained frompn+1 at all compressible points adjacent to the incompressible
region using the formula

p? =
(4t

ρ I

)
(pn+1+ σκ)

where the4t/ρ I multiplier accounts for the scaling,ρ I is the incompressible density, and
theσκ term accounts for the jump in pressure due to surface tension forces, i.e., [p] = σκ.
Note that the curvature is computed at each grid point using the level set function,φn+1 . To
solve (18) we use a preconditioned conjugate gradient (PCG) method with an Incomplete
Choleski preconditioner [15]. Oncep? has been computedEVn+1 is obtained with the relation
EVn+1 = EV? −∇ p?.

4. RUNGE–KUTTA AND ADAPTIVE TIME STEPPING

Since both second- and third-order TVD Runge–Kutta schemes [29] can be written as a
convex combination of simple Euler steps [29, 17], it is straightforward to generalize the
first-order time discretization discussed in Section 3 to third-order TVD Runge–Kutta. One
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diffculty in implementing Runge–Kutta methods in problems with interfaces arises when
nodal values change character as the interface moves (e.g., one may inadvertently average
incompressible and compressible flow values). However, the use of the GFT circumvents
this diffculty. First, the values of the level set can be averaged directly. Second, the values
of the compressible fluid can be averaged using the appropriate ghost cell values where
necessary. Third, the incompressible velocity can be averaged using the extended values of
the EVMAC velocity field where needed. Note that the values ofEVMAC in the ghost cells are
determined by one-sided extrapolation of the incompressible velocity and thus do not exactly
satisfy the divergence-free condition, although they do have incompressible character. This
can cause slight jumps in the pressure at the interface as a larger than normal pressure
gradient is needed to enforce exact incompressibility. Also, when using these extended
velocities in a Runge–Kutta averaging procedure, the resulting velocity field is not exactly
divergence–free. However, the numerical results show that the area loss is small, especially
when compared to any standard level set calculation. Thus, these slightly compressible edge
velocities do not seem to be a significant source of error. Note that one could remove these
errors entirely by defining the extended velocity field using a divergence-free constraint
similar to the process outlined for free surface flows [7, 8].

Adaptive time stepping is used where the overall time step is the minimum of the com-
pressible and incompressible time steps, i.e.,

4t = 0.5 min(4tC,4t I ) (19)

where we have chosen a CFL restriction of 0.5. For compressible flow, the convective time
step restriction

4tC

( |u| + c

4x
+ |v| + c

4y

)
≤ 1 (20)

needs to be satisfied at every grid point, wherec =
√

γ p
ρ

is the speed of sound. For incom-
pressible flow, every grid point needs to satisfy

4t I

(
(Ccfl + Vcfl)+

√
(Ccfl + Vcfl)2+ 4(Scfl)2

2

)
≤ 1, (21)

where

Ccfl = |u|4x
+ |v|4y

(22)

is for the convection terms,

Vcfl = µ

ρ

(
2

(4x)2
+ 2

(4y)2

)
(23)

is for the viscous terms, and

Scfl =
√

σκ

ρ(min{4x,4y})2 (24)

is for the surface tension forces [17].



10 CAIDEN, FEDKIW, AND ANDERSON

5. NUMERICAL EXAMPLES

In this section, we report on numerical examples which demonstrate the accuracy and
convergence behavior of the method. In particular, these examples show that the fluid
quantities are not smeared out near the interface nor do the numerical solutions exhibit
nonphysical oscillations. Also, all the two-dimensional numerical examples had less than
1
2% area loss on the finest grids. The calculations performed here used third-order accurate
TVD Runge–Kutta methods and adaptive time stepping as discussed in section 4. Unless
otherwise specified, the two-dimensional examples include the effects of viscosity and
surface tension withµ = .001137 kg/m s andσ = .0728 kg/s2. These effects are not present
in one spatial dimension.

5.1. One-Dimensional Case

In one spatial dimension, the incompressible flow equations are greatly simplified.
Equation (4) becomesux = 0 implying that the incompressible velocity is constant.
Equation (3) then becomes

ut + px

ρ
= 0, (25)

implying that Eq. (5) is justu? = un. Equation (7) becomesp?xx = 0 implying that the
incompressible pressure is merely a straight line connecting the values ofp? on the left and
right boundaries. In fact, Eq. (9) becomes

un+1− un + p?right− p?left

L
= 0, (26)

whereL is the length of the incompressible region.

5.1.1. EXAMPLE 1. Consider a 1-m domain with 200 grid cells. The domain is filled
with a compressible gas withγ = 1.4, ρ = 1.226 kg/m3, u = 0 m/s, andp = 1× 105 Pa,
except for a 0.2-m incompressible droplet in the center of the domain withρ = 1000 kg/m3,
u = 100 m/s, andp = 1× 105 Pa. Since the incompressible droplet is moving to the right
in a gas which is originally at rest, a compression wave will form in the gas ahead of it and
an expansion wave will form in the gas behind it as shown in Fig. 1 att = 7.5× 10−4 s.
The density, velocity, and pressure all drop across the few-grid-cell-thick compression
wave, although the density jump is too small to be seen in the figure. The density and
pressure drop while the velocity rises across the smooth expansion wave which is resolved
by the grid, although once again, the density change is too small to be seen in the figure.
Figure 2 shows similar behavior with an incompressible density ofρ = 10 kg/m3. Note
that the lighter droplet is slowed down faster by the compressible gas, and as a result
secondary expansion waves with significant amplitude stretch between the droplet and the
lead compression and expansion waves. A grid refinement study was performed on both
calculations using grids of 200, 400, and 800 cells. The incompressible velocity was used
for the comparison with Aitken extrapolation [3]. The computed velocities of 99.7216,
99.7189, and 99.7175 m/s from the coarsest to the finest mesh yield a convergence rate of
0.9475 for theρ= 1000 kg/m3 case, and the computed velocities of 75.6466, 75.4843, and
75.4043 m/s yield a convergence rate of 1.0206 for theρ = 10 kg/m3 case. Figure 3 shows
the results obtained with 800 grid cells for theρ = 10 kg/m3 case to illustrate the behavior
of the variables under mesh refinement.
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FIG. 1. Incompressibleρ = 1000 kg/m3 droplet traveling to the right att = 7.5× 10−4 s.

FIG. 2. Incompressibleρ = 10 kg/m3 droplet traveling to the right att = 7.5× 10−4 s (200 grid cells).
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FIG. 3. Incompressibleρ = 10 kg/m3 droplet traveling to the right att = 7.5× 10−4 s (800 grid cells).

5.1.2. EXAMPLE 2. In this example, the ambient compressible medium hasρ=
1.58317 kg/m3, u= 0 m/s, andp= 98,066.5 Pa. A shock wave is initially located atx =
0.1 m with a post-shock state ofρ = 2.124 kg/m3, u = 89.981 m/s, andp = 148,407.3 Pa
to the left ofx = 0.1 m. The shock wave travels to the right, impinging on the incompress-
ible droplet with initial state ofρ = 1000 kg/m3, u = 0 m/s, andp = 98,066.5 Pa, causing
both reflected and transmitted waves as shown in Fig. 4 att = 1.75× 103 s. Note that the
transmitted wave is too weak to be seen in this figure, although it can clearly be seen in
Fig. 5, which shows the same calculation with an incompressible density ofρ = 10 kg/m3.
Figure 6 shows the calculation at an earlier time oft = 9× 10−4 s with a density of 10 kg/m3,
shortly after the shock has initially impinged on the droplet. Note that the transmitted wave
has traversed the droplet at infinite speed and is now entering the gas on the far side. A grid
refinement study was performed on both calculations using grids of 200, 400, and 800 cells
and the incompressible velocity for the comparison. The computed velocities of 0.544424,
0.5444639, and 0.5444742 m/s from the coarsest to the finest mesh yield a convergence rate
of 1.0617 for theρ = 1000 kg/m3 case, and the computed velocities of 40.9873, 40.8685,
and 40.8074 m/s yield a convergence rate of 0.9593 for theρ = 10 kg/m3 case. Figure 7
shows the results obtained with 800 grid cells for theρ = 10 kg/m3 case to illustrate the
behavior of the variables under mesh refinement.

5.2. Two-Dimensional Case

5.2.1. EXAMPLE 3. Consider a [0 m, 1 m]× [0 m, 1 m] domain with 100 grid cells
in each direction. Similarly to Example 1, the domain is filled with a compressible gas
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FIG. 4. Shock wave impinging on an incompressibleρ = 1000 kg/m3 droplet att = 7.5× 10−3 s.

FIG. 5. Shock wave impinging on an incompressibleρ = 10 kg/m3 droplet att = 1.75× 10−3 s (200 grid
cells).
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FIG. 6. Shock wave impinging on an incompressibleρ = 10 kg/m3 droplet att = 9× 10−4 s.

FIG. 7. Shock wave impinging on an incompressibleρ = 10 kg/m3 droplet att = 1.75× 10−3 s (800 grid
cells).
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FIG. 8. Incompressibleρ= 1000 kg/m3 droplet traveling to the right att = 5× 10−4 s (one-dimensional cross
section).

with ρ = 1.226 kg/m3, u = v = 0 m/s, andp = 1× 105 Pa, except for a 0.2-m radius
incompressible droplet in the center of the domain withρ = 1000 kg/m3, u = 100 m/s,
v = 0 m/s, andp = 1× 105 Pa. This incompressible droplet moves to the right, causing a
compression wave in the gas ahead of it and an expansion wave in the gas behind it. Figure 8
shows a one-dimensional cross-section of these waves att = 5× 10−4 s. Figures 9 and 10
show the pressure contours and the velocity field at the same time. Figure 11 shows the
initial level set location as compared to the location att = 2.5× 10−3 s using 50, 100, and
200 grid cells in each direction. Careful examination of the right-hand side of the level set
location shows first order accurate convergence in the location of the interface. An area
loss study was undertaken using the method outlined in the Appendix. Initially, the area
of the droplet is 0.04π . The area loss was 0.23, 0.16, and 0.0125% on grids with 50, 100,
and 200 cells in each direction respectively. Similar results forρ = 10 kg/m3 are shown in
Figs. 12 and 13 where the area loss was 0.49, 0.31, and 0.13%. Notice that the lighter droplet
has been deformed and slowed at a higher rate than the heavier droplet. Also note that the
calculation on the finest mesh is starting to show signs of Kelvin–Helmholtz instability as
demonstrated by the small wiggles in the interface location. This instability occurs when the
tangential velocity is discontinuous across an interface as is required by the imposed no-slip
interface boundary condition. On coarser grids, the numerical viscosity can nonphysically
damp out this effect.

In order to illustrate the effects of viscosity and surface tension, we shrink the domain
to [0 m, 1× 10−5 m] × [0 m, 1× 10−5 m] for the ρ = 10 kg/m3 case. Figure 14 shows a



FIG. 9. Incompressibleρ = 1000 kg/m3 droplet traveling to the right att = 5× 10−4 s (pressure contours).

FIG. 10. Incompressibleρ = 1000 kg/m3 droplet traveling to the right att = 5× 10−4 s (velocity field).



FIG. 11. Incompressibleρ = 1000 kg/m3 droplet traveling to the right att = 2.5× 10−3 s as compared to
the initial data.

FIG. 17. Shock wave impinging on an incompressibleρ = 10 kg/m3 droplet att = 1.25× 10−3 s (velocity
field).
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FIG. 12. Incompressibleρ = 10 kg/m3 droplet traveling to the right att = 5× 10−4 s (one-dimensional cross
section).

FIG. 13. Incompressibleρ = 10 kg/m3 droplet traveling to the right att = 2.5× 10−3 s as compared to the
initial data.
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FIG. 14. Incompressibleρ = 10 kg/m3 droplet traveling to the right on a small domain att = 5× 10−9 s
(one-dimensional cross section).

FIG. 15. Incompressibleρ = 10 kg/m3 droplet traveling to the right on a small domain att = 2.5× 10−8 s
as compared to the initial data.
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one-dimensional cross section of these waves att = 5× 10−9 s. Note the jump in pressure
due to surface tension effects. Figure 15 shows the initial level set location as compared
to the location at 2.5× 10−8 using 50, 100, and 200 grid cells in each direction where the
area loss was 0.225, 0.107, and 0.006%, respectively. Note that the smaller droplet 18.has
a rounder shape than the larger droplet in Fig. 13.

5.2.2. EXAMPLE 4. Consider a [0 m, 1 m]× [0 m, 1 m] domain with 100 grid cells
in each direction. Similarly to Example 2, the ambient compressible medium hasρ =
1.58317 kg/m3, u = v = 0 m/s, andp = 98,066.5 Pa. A shock wave is initially located
at x = 0.1 m with a post-shock state ofρ = 2.124 kg/m3, u = 89.981 m/s,v = 0 m/s,
and p = 148,407.3 Pa to the left ofx = 0.1 m. The shock wave travels to the right im-
pinging on the incompressible droplet with initial state ofρ = 10 kg/m3, u = v = 0 m/s,
and p = 98,066.5 Pa, with radius 0.2 m at the center of the domain, causing both re-
flected and transmitted waves as shown in the one-dimensional cross sections in Fig. 16 at
1.25× 10−3 s. Figure 17 shows the velocity fields at the same time. Figure 18 shows the
initial level set location as compared to the location att = 2.5× 10−3 s using 50, 100, and
200 grid cells in each direction where the area loss was 1.6, 0.52, and 0.43%, respectively.
Note that the calculation on the finest mesh is starting to show signs of Kelvin–Helmholtz
instability.

FIG. 16. Shock wave impinging on an incompressibleρ = 10 kg/m3 droplet att = 1.25× 10−3 s (one-
dimensional cross section).
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FIG. 18. Shock wave impinging on an incompressibleρ = 10 kg/m3 droplet att = 2.5× 10−3 s as compared
to the initial data.

6. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a numerical method for two-phase ow where one of the
phases is treated as an incompressible flow and one is treated as a compressible flow. The pri-
mary computational diffculty in creating numerical schemes that respect the fundamentally
different nature of the fluids in these phases is the creation and implementation of appro-
priate boundary conditions. We derive boundary conditions using “ghost fluid” ideas; the
computational results indicate that high-quality solutions can be obtained with their use. The
test problem we considered was the behavior of an incompressible liquid when subjected
to shock waves formed in a high-speed gas flow. This test problem was primarily selected
to investigate the ability of our proposed method to compute compressible/incompressible
flow interactions when the compressible flow contains shocks. It is a separate (and inter-
esting) problem in fluid mechanics to consider the validity of modeling liquid/gas phase
interactions as an incompressible/compressible interaction. In future work, the validity of
the incompressible assumption for the liquid will be tested by comparing the results ob-
tained with the method presented here with the results obtained with a method where the
liquid is modeled as a slightly compressible fluid.

APPENDIX: UNBIASED LEVEL SET CONTOURING

Consider a two-dimensional level set function,φ, defined on a Cartesian grid. This ap-
pendix addresses the construction of an unbiased linear approximation to the zero contour
(whereφ = 0) of the level set function (commonly used contour routines introduce a direc-
tional bias due to the choice of an underlying triangulation).
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FIG. 19. (a) Diagonal, (b) off-diagonal.

The standard contour-plotting algorithms dictate triangulation of the domain, followed
by linear interpolation along each edge of each triangle, resulting in the determination of
the location of the zero values of the level set function along each edge. These zero values
occur on two of the edges when the sign of the level set function on one corner is different
from the sign on the other two corners, or on none of the edges when the sign of the level
set function is the same on all three corners. In the case where the zero values occur on
two of the edges, a line segment can be used to connect these two zero values, leading to a
piecewise linear subcell representation of the zero contour of the level set function. From
this zero contour one can easily calculate quantities such as the area enclosed by or the
length of the zero contour.

A straightforward way to choose a triangulation consists of constructing a diagonal in
every Cartesian grid cell. LetExi, j , Exi+1, j , Exi, j+1, and Exi+1, j+1 represent a single grid cell
where the subscripts place the points in the obvious locations. Then one could construct
thediagonalconnectingExi, j and Exi+1, j+1 or theoff-diagonalconnectingExi+1, j and Exi, j+1

as shown in Figs. 19a and 19b, respectively. For each Cartesian grid cell, there are four
distinct cases to consider. Case 1: all four nodal values have the same sign ofφ (note that
we classifyφ = 0 as negative, since we partition the domain into two parts consisting of
φ ≤ 0 andφ > 0). In Case 1, there is nothing to address since the cell does not contain any
part of the zero contour. Case 2: one of the nodal values has a different sign than the other
three. Case 3: there are two nodes of each sign and opposite corners are of the same sign.
Case 4: there are two nodes of each sign and opposite corners are of opposite sign. Each
case is discussed in detail below.

Consider Case 2 withφi, j ≤ 0, φi+1, j > 0, φi, j+1 > 0 andφi+1, j+1 > 0. The diagonal
determines two triangles which each contain part of the interface, while only one of the two
triangles produced by the off-diagonal contains part of the interface; i.e., different answers
are obtained depending on whether the diagonal or the off-diagonal is used. See Fig. 20 for
an illustration of the diagonal case (Fig. 20a) and the off-diagonal case (Fig. 20b). In the
figure, the shaded regions denoteφ ≤ 0. Presumably, using the extra zero value that lies on
the diagonal itself results in a more accurate construction as shown in Fig. 20a. Otherwise,
there is no need for triangles in this case at all, as one can construct the representation given
by the off-diagonal construction in Fig. 20b by simply connecting the linearly interpolated
zeroes on each side of the grid cell. Note that the diagonal gives extra information (an
extra point) when eitherφi, j or φi+1, j+1 is the point of differing sign, but gives no extra
information (no extra point) when eitherφi+1, j or φi, j+1 is the point of differing sign. For
the case where eitherφi+1, j orφi, j+1 is the point of differing sign, the off-diagonal must be
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FIG. 20. (a) Diagonal, (b) off-diagonal.

used to pick up extra information (an extra point). This case points out that it is unwise to
use diagonals (or off-diagonals) everywhere since the reconstruction is biased. It is better
to use an “adaptive” triangulation which always gives extra information; i.e., one should
choose the diagonal or off-diagonal in order to obtain a construction similar to Fig. 20a and
not Fig. 20b.

Consider Case 3 withφi, j ≤ 0, φi+1, j > 0, φi, j+1 > 0, andφi+1, j+1 ≤ 0. The diagonal
construction implies that the line of sight (the line segment connecting two points in space)
betweenφi, j andφi+1, j+1 is contained inφ ≤ 0, while the line of sight betweenφi+1, j

andφi, j+1 is not contained inφ > 0, as shown in Fig. 21a. Similarly, the off-diagonal
construction implies that the line of sight betweenφi+1, j andφi, j+1 is contained inφ > 0,
while the line of sight betweenφi, j andφi+1, j+1 is not contained inφ ≤ 0, as shown in
Fig. 21b. In level set notation, the diagonal construction implies that the negative values of
the level set have (or are) “merged,” while the off-diagonal construction implies that the

FIG. 21. (a) Diagonal, (b) off-diagonal, (c) connect opposite edges, (d) adaptive triangulation.
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positive values of the level set are merged. In fact, using a diagonal construction everywhere
creates a grid dependence of increased merging in the diagonal direction, while using the
off-diagonal construction everywhere creates a grid dependence of increased merging in
the off-diagonal direction. Obviously, this is not desirable and some average of these two
constructions is desired, especially since the information given (at the grid nodes) does not
dictate whether merging has occurred. The choice of triangulation itself forces the merging.
Using the linearly interpolated zero values on each of the four sides of the cell, one can see
that the diagonal construction implies that the point on the bottom of the cell betweenExi, j

and Exi+1, j is connected to the point on the right of the cell betweenExi+1, j and Exi+1, j+1,
while the point on the left of the cell betweenExi, j andExi, j+1 is connected to the point on the
top of the cell betweenExi, j+1 and Exi+1, j+1, implying that the negative values are merged.
Similarly, the off-diagonal construction implies that the point on the bottom of the cell is
connected to the point on the left, while the point on the right is connected to the point on
top, implying that the positive values are merged. Since there are four points to be paired
off into two linear segments, three are three ways to make the connections. The diagonal
and off-diagonal constructions give only two ways, leaving one possibility inaccessible to
these straightforward triangulations. The remaining way to connect the four points consists
of connecting the points on opposite sides of the cell giving a construction where neither the
positive nor the negative values are merged as shown in Fig. 21c. In fact, both the positive
and the negative values are in contact at a single saddle point formed by the intersection of
the two line segments producing an “average” of the two triangulations. While achieving
the desired compromise between positive and negative merging, this method does not use
triangulation to determine an extra point, as opposed to Fig. 20a. In addition, the positive and
negative merging cases do not use an extra subcell point either, as they can be constructed
by connecting the zero values of the Cartesian cell in the appropriate fashion. In fact, the
positive and negative merging cases each contain two line segments similar to Case 2 without
triangulation as was shown in Fig. 20b. Therefore, in order to introduce a new point within
this cell to improve the accuracy, we choose the standard average of the four zero values on
the Cartesian cell boundary. The zero contour is constructed by connecting this new point to
each of the four zero values from which it was formed. Note that this construction can be
obtained with an adaptive triangulation where the cell is divided into four triangles defined
by the line segments connecting this new zero value inside the cell to each of the four corners
of the cell. This adaptive triangulation and the resulting segmentation are shown in Fig. 21d.

Consider Case 4 withφi, j ≤ 0,φi+1, j ≤ 0, φi, j+1 > 0 andφi+1, j+1 > 0. One could sim-
ply connect the two zero values with a straight line ignoring triangulation as shown in
Fig. 22a. Using triangulation gives a different subcell point depending on whether the di-
agonal (Fig. 22b) or the off-diagonal (Fig. 22c) is used (except for the case where the
subcell point happens to be the intersection of the diagonal and the off-diagonal forboth
constructions). To avoid ambiguities one needs to determine which of these two candidates
for the intermediate point should be used. Designating the subcell candidates byEx1 and
Ex2 and the zeroes on the Cartesian boundary byExL and ExR, both points can be used in the
construction by connectingExL to Ex1 to Ex2 to ExR (Fig. 22d) or by connectingExL to Ex2 to Ex1 to
ExR (Fig. 22e). However, this gives a subcell contour with a possibly large variation. Instead
of choosing one or the other, we note that the line segment connectingEx1 to Ex2 lies on both
contours and choose the midpoint of this line segment (the standard average ofEx1 and Ex2)
as the subcell zero value and connect this midpoint to each of the zeroes on the Cartesian
boundary, resulting in a construction with less variation (a shorter length) than one using
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FIG. 22. (a) Connect opposite edges, (b) diagonal, (c) off-diagonal, (d) both, (e) both, (f) adaptive triangulation.

both Ex1 andEx2. Once again, this construction can be obtained with an adaptive triangulation
where the cell is divided into four triangles defined by the line segments connecting this new
zero value inside the cell to each of the four corners of the cell. This adaptive triangulation
and the resulting segmentation are shown in Fig. 22f. It is interesting to note that Case 3 and
Case 4 have two corner values of differing sign and require four triangles, while Case 2 has
one corner value of differing sign and requires two triangles, implying that two triangles
are needed for each corner that differs in sign.

Note that one could ignore triangulation altogether, simply connecting the two edge points
in Case 2 (Fig. 20b) and in Case 4 (Fig. 22a), while connecting the points on the opposite
sides of the cell in Case 3 (Fig. 21c). This gives similar answers in each case, although some-
what less accurately since no extra grid point is determined within the cell.

A.1. Calculating Area

We use the cross product of two vectors to compute the area of triangles, as this is
rather robust. For example, consider a triangle with vertices defined byExa, Exb, and Exc in
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counterclockwise order; then definingEvb = Exb − Exa andEvc = Exc − Exa allows us to define
the area asEvb × Evc/2. Using this definition it is easy to avoid rounded errors due to thin
triangles, as they show up as a negative area that can be discarded.

REFERENCES

1. R. Abgrall, How to prevent pressure oscillations in multicomponent flow calculations: A quasi conservative
approach,J. Comput. Phys.125, 150 (1996).

2. D. Adalsteinsson and J. A. Sethian, The fast construction of extension velocities in level set methods,J.
Comput. Phys.148, 2 (1999).

3. K. E. Atkinson,Introduction to Numerical Analysis, 2nd ed. (Wiley, New York, 1989).

4. J. U. Brackbill, D. B. Kothe, and C. Zemach, A continuum method for modeling surface tension,J. Comput.
Phys.100, 335 (1992).

5. V. Casulli and D. Greenspan, Pressure method for the numerical solution of transient, compressible fluid
flows, Int. J. Numer. Methods Fluids4, 1001 (1984).

6. Y. C. Chang, T. Y. Hou, B. Merriman, and S. Osher, A level set formulation of Eulerian interface capturing
methods for incompressible fluid flows,J. Comput. Phys.124, 449 (1996).

7. S. Chen, D. Johnson, and P. Raad, Velocity boundary conditions for the simulation of free surface fluid flow,
J. Comput. Phys.116, 262 (1995).

8. S. Chen, D. Johnson, P. Raad, and D. Fadda, The surface marker and micro cell method,Int. J. Numer. Methods
Fluids25, 749 (1997).

9. A. J. Chorin, Numerical solution of the Navier–Stokes equations,Math. Comp.22, 745 (1968).

10. P. Colella and K. Pao, A projection method for low speed flow,J. Comput. Phys.149, 245 (1999).

11. R. Fedkiw, T. Aslam, B. Merriman, and S. Osher, A non-oscillatory Eulerian approach to interfaces in
multimaterial flows (The ghost fluid method),J. Comput. Phys.152, 457 (1999).

12. R. Fedkiw, T. Aslam, and S. Xu, The ghost fluid method for deflagration and detonation discontinuities,
J. Comput. Phys.154, 393 (1999).

13. R. Fedkiw, B. Merriman, R. Donat, and S. Osher, The penultimate scheme for systems of conservation laws:
Finite difference ENO with marquina’s flux splitting, inProgress in Numerical Solutions of Partial Differential
Equationsedited by M. Hafez (Arachon, France, July 1998).

14. R. Fedkiw, B. Merriman, and S. Osher, Numerical methods for a one-dimensional interface separating com-
pressible and incompressible flows, inin Barriers and Challenges in Computational Fluid Dynamics, edited
by V. Venkatakrishnan, M. Salas, and S. Chakravarthy (Kluwer Academic, Norwell, MA, 1998), pp. 155–194.

15. G. Golub and C. Van Loan,Matrix Computations(Johns Hopkins Univ. Press, Baltimore, 1989).

16. G.-S. Jiang and D. Peng,Weighted ENO schemes for Hamilton–Jacobi Equations, UCLA CAM Report 97-29,
June 1997;SIAM J. Numer. Anal.(to appear).

17. M. Kang, R. Fedkiw, and X.-D. Liu, A boundary condition capturing method for multiphase incompressible
flow, submitted for publication.

18. S. Karni, Hybrid multifluid algorithms,SIAM J. Sci. Comput.17(5), 1019 (1996).

19. S. Karni, Multicomponent flow calculations by a consistent primitive algorithm,J. Comput. Phys.112, 31
(1994).

20. R. Klein, Semi-implicit extension of a Godunov-type scheme based on low mach number asymptotics. I. One
dimensional flow,J. Comput. Phys.121, 213 (1995).

21. S. Osher and J. A. Sethian, Fronts propagating with curvature dependent speed: Algorithms based on Hamilton–
Jacobi Formulations,J. Comput. Phys.79, 12 (1988).

22. W. Mulder, S. Osher, and J. A. Sethian, Computing interface motion in compressible gas dynamics,J. Comput.
Phys.100, 209 (1992).

23. G. Patnaik, R. H. Guirguis, J. P. Boris, and E. S. Oran, A barely implicit correction for flux-corrected transport,
J. Comput. Phys.71, 1 (1987).

24. R. Peyret and T. D. Taylor,Computational Methods for Fluid Flow, Springer-Verlag, New York, 1983.



NUMERICAL METHOD FOR TWO-PHASE FLOW 27

25. R. Saurel and R. Abgrall, A multiphase Godunov method for compressible multiphase flows,J. Comput. Phys.
150, 425 (1999).

26. T. Schneider, N. Botta, K. J. Geratz, and R. Klein, Extension of finite volume compressible flow solvers to
multidimensional, variable density zero mach number flows,J. Comput. Phys.155, 248 (1999).

27. J. Sesterhenn, B. Muller, and H. Thomann, On the cancellation problem in calculating low mach number
flows,J. Comput. Phys.151, 597 (1999).

28. J. A. Sethian, Fast marching methods,SIAM Rev.41, 199 (1999).

29. C. W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock capturing schemes,J.
Comput. Phys.77, 439 (1988).

30. C. W. Shu and S. Osher, Effcient implementation of essentially non-oscillatory shock capturing schemes, II,
J. Comput. Phys.83, 32 (1989).

31. K.-M. Shyue, A fluid-mixture type algorithm for compressible multicomponent flow with van der waals
equation of state,J. Comput. Phys.156, 43 (1999).

32. K.-M. Shyue, An efficient shock capturing algorithm for compressible multicomponent problems,J. Comput.
Phys.142, 208 (1998).

33. M. Sussman, P. Smereka, and S. Osher, A level set approach for computing solutions to incompressible
two-phase flow,J. Comput. Phys.114, 146 (1994).

34. S. O. Unverdi and G. Tryggvason, A front-tracking method for viscous, incompressible, multi-fluid flows,J.
Comput. Phys.100, 25 (1992).

35. F. Xiao, A computational model for suspended large rigid bodies in 3d unsteady viscous flows,J. Comput.
Phys.155, 348 (1999).

36. T. Yabe and P.-Y. Wang, Unified numerical procedure for compressible and incompressible flow,J. Phys. Soc.
Jpn.60, 2105 (1991).


	1. INTRODUCTION
	2. EQUATIONS AND THEIR DISCRETIZATION
	3. SOLUTION ADVANCEMENT
	4. RUNGE–KUTTA AND ADAPTIVE TIME STEPPING
	5. NUMERICAL EXAMPLES
	FIG. 1.
	FIG. 2.
	FIG. 3.
	FIG. 4.
	FIG. 5.
	FIG. 6.
	FIG. 7.
	FIG. 8.
	FIG. 9.
	FIG. 10.
	FIG. 11.
	FIG. 12.
	FIG. 13.
	FIG. 14.
	FIG. 15.
	FIG. 16.
	FIG. 17.
	FIG. 18.

	6. CONCLUSIONS AND FUTURE WORK
	APPENDIX: UNBIASED LEVEL SET CONTOURING
	FIG. 19.
	FIG. 20.
	FIG. 21.
	FIG. 22.

	REFERENCES

